Journal of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 2, pp. 205~ 211, 2006 205

Analysis of Orthotropic Bearing Non-linearity
Using Non-linear FRFs
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Among other critical conditions in rotor systems the large non-linear vibration excited by

bearing non-linearity causes the rotor failure. For reducing this catastrophic failure and pre-

dictive detection of this phenomenon the analysis of orthotropic bearing non-linearity in rotor

system using higher order frequency response functions (HFRFs) is conducted and is shown to

be theoretically feasible as that of non-rotating structures. The complex HFRFs based on the

Volterra series are newly developed for the process and investigated their features by using the

simple forms of the FRFs associated with the forward and the backward modes.
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Nomenclature

Cm Cs : Dampings for linear mean, deviatoric
properities

Cmn, Can © Dampings for non-linear mean, de-
viatoric properities

Cy, Cz, Cyz, Czy . Dampings for linear coefficients in

y-z directions

Cny, Cnz . Dampings for non-linear coefficients
in y-z directions

Dm,Dr  : Dynamic mean, deviatoric stiffnesses

g(t) . Complex input force

G : Magnitude of harmonic input

H . Frequency response

h . Kernel

Jr . Polar moment of inertia of rotor

7 . Unit imaginary number (=,/—1)

Kn, K : Stiffnesses for linear mean, deviatoric

properities
Kun, Kan © Stiffnesses for non-linear mean, de-
viatoric properities
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ky, kz, kyz, kzy - Stiffnesses for linear coefficients in
y-2z directions

Fny, knz . Stiffnesses for non-linear coefficients
in y-z directions

m . Rotor mass

N . Total number of coordinates

p(¢) . Complex output response

t . Time

u . Integral parameter of kernel

y(#),z(t): Real displacements in y-z coordina-
tes

Q . Rotational speed

w : Rotational frequency

Superscripts

() . Complex conjugate

Subscripts

m,A : Mean, deviatoric properties

m,n . Integers for index

V,Z . y- and z-directional real-valued pro-

perties
1. Introduction
Another special and local properties but gener-

ally accepted feature to deviate the rotor systems
are the stator or bearing non-linearities, let alone
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manufacturing errors, clearances and joint sur-
faces. Especially the rolling element bearing, hy-
drodynamic bearings and squeeze film dampers
are known to possess highly non-linear charac-
teristics and their reliabilities are directly related
to closer predictions and analysis of dynamic
responses. Hence it is quite reasonable to investi-
gate the non-linear analysis for effective diagnosis
or the identification for bearing non-linearity.
The mathematical non-linear analysis in rotor
systems, by which the dynamic behaviors along
with the parameter can be determined, still re-
mains some far from the practical applications,
however, they are useful and advantageous in
explaining the physical phenomena. As a result,
the main issues of the diagnosis for non-linear
properties in stator have been analyzing the char-
acteristics of its behavior from the signals in
practice. In these respects, Lin (1993) presented a
non-linear analysis of complex modes with hy-
steretic damping model in general structure and
Ozguven (1993) also introduced the similar con-
cept for non-linear frequency response. Tiwari
(1995) suggested a non-linear parameter identifi-
cation of rolling element stiffness by introducing
probability density function with the model of a
cubic non-linearity. Liangsheng (1993) introduc-
ed the concept of the pseudo-phase diagram and
spectrum from the raw signals. Also other re-
searches have been made using non-linear time
series model as NARMAX for its relatively an-
alytical easiness though its computational efforts
and contamination by noise. Most of those re-
searches are limited to simple general structures
or simple rotor systems with isotropic bearing,
which are in practice the same as the simple
stationary structures, so that few attempts have
been made in the analysis of the rotor systems
with non-linear orthotropic bearing. As these
reasons, in this study, in the sense that if the
non-linearity can be expressed in polynomial
form and the system is stable and time-invari-
ant, the HFRFs based on the Volterra series
(Tiwari and Vyas, 1995 ; Storer and Tomlinson,
1993 ; Vyas and Chatterjee, 2000; Zhang and
Billings, 1993 ; Bedrosian and Stephen, 1971 ;
Schetzen, 1990) are the practically valuable tools

for analyzing the nature of non-linearity in wide
class of structures, the complex HFRFs for rotor
systems with orthotropic bearing are newly inves-
tigated and show the feasibility to further appli-
cation. In particular, the non-linear complex
FRFs by the non-linear complex modal analysis
(Lin and Lim, 1993; Ozguven and Imregun,
1993) which utilizes between complex inputs and
outputs for effective modal parameter identific-
ation and gives not only the directivity of the
backward and forward modes but also separates
those modes completely in the frequency domain
so that effective modal parameter identification
is possible (Lee et al., 2001), have been a new
application to the case of non-linear rotating or
stationary systems.

2. Representations of Bearing
Non-linearity

The bearing non-linearity is mainly caused by
the dynamic motion of the fluid film between the
rolling element bearing and its journal of the
hydrostatic or hydrodynamic bearing. The stiff-
ness and damping characteristics of these bear-
ings are non-linear functions of their displace-
ments and clearances for relatively large amount
of motions (Storer and Tomlinson, 1993). These
two properties are coupled together by the motion
parameters, i.e., the displacements, clearances and
rotational speeds, so that changes of the damping
result in those of the stiffness and vice-versa. For
non-linear analysis of the bearing properties,
however, the stiffness and damping characteristics
are premised to be polynomial expressions to ap-
propriate degrees for the closed form formulation,
which is generally accepted to be reasonable in
past studies (Storer and Tomlinson, 1993 ; Vyas
and Chatterjee, 2000 ; Zhang and Billings, 1993 ;
Worden and Manson, 1998 ; Han et al., 1998). In
such a case, the trade-off studies are preceded for
the polynomial degree for closer access to the
damping and stiffness non-linearities. Normally
in this case cubic form is available in effect. The
other non-linear properties of the stator (bear-
ing) beyond the assumed polynomial model are
rubbing, radial clearance, hysteric or coulomb
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damping, bilinear stiffness etc, in which case the
polynomial assumption is heavy and rough, how-
ever, the identification of these other ones are
naturally deduced by resulting phenomenon of
the polynomial model. Accordingly, in this study,
the analysis of the bearing non-linearity is based
on the assumption of that in polynomial form.

For the anisotropic rigid rotor, which is as-
sumed to be simply supported at both ends and
only one degree of freedom is used for the dis-
placements in the y and z directions, with non-
linearities (cubic) of dampings, Cny, Cnz and stiff-
nesses, kny, knz, of the bearings (see Figs. 1 and
2) which is ubiquitous in Duffing oscillator
(Worden and Manson, 1998), the equation can
be derived in the cubic polynomial form of

my+ cyy+ Jo22+ a2+ Cnyd®
+ kyy + kyzZ + knyyszgy,

mzZ+ cz2 +]p.Qy + Cazy + anzs
+ kzy + kzyy + kﬂzzs :gz,

(1)

where m, Cy, Cyz, Cz, Czy, Ry, kyz, Rz, kzy, Jp, 2,

Shaft

S O

Beaning

4 Disk %

Fig. 1 Modeling a simple rotor system with

orthotropic bearing

Fig. 2 Bearing stiffness and damping coefficient

are rotor mass, bearing dampings and their stiff-
nesses, rotor polar moment of inertia normalized
by squared shaft length, and rotational speed, re-
spectively. Applying the complex notations such
as p=y+jz, b=v—Jjz, g=gy+Jjg. to Egs. (1),
the equation leads to the following complex form

M+ (Ca—7752) p+Kunp+Cad+ KaD
+ [Can (5°+30°D) +Can (0°+3p0°) | (2)
+ [Kan (0°+3p°D) +Kan (p°+3pp%) ] =g,

where the bracket term denotes the non-linear
effects and their parameters are

M=m, Cn= (Cy+ Cz) /2+] (Cyz_czy) /2,
Ca= (Cy_cz) /2+j<cyz+czy> /2,

Kn= (ky+kz) /2+j<kyz_kzy> /2,

Ka= (ky_kz) /2+j(kyz+kzy> /2’

Cmmn= (Cny_an) /89 Can= (Cny+ Cnz) /8,
K= (kny*knz> /87 K= (kny+ knz) /8~

Here case the damping and stiffness parameters
are assumed to be independent of the rotational
speed for more or less higher speed range (Genta,
1988).

3. Non-linear Response Analysis

The output P(#) of a non-linear system in
power of the input g(#) is expressed by the well-
known Volterra series (Bedrosian and Stephen,
1971), which is depicted in the form of

PU)=3 [ du [ duahlin, =, u) [l (=1, (3)

where %, (21, -+, un) is the n-th order kernel

1%t order kernel

of the system, in this case the
71 (1) is the impulse response of a linear system.

The n-fold Fourier transformation of the ker-
nel is the 7#-th order Volterra kernel that has an
analogy to the zn-th order transfer function, which

is described as

Ha(wy, -, @n)

:%'/:: d?h/:: dutnhn (ul’ ) un> e_jwrllr, <4>

where the 1°* order Volterra kernel H,(w,) is the
transfer function of a linear system.
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To derive the general form of an expression
of the Volterra series by the series of harmonic

b .
inputs such as g(t):z.l gme’®mt, the dummy
=

coefficients as and the differential operator, which
a’l

aa'l-"&a/n a1=-=an=0

Applying this dummy variable and the sum of

is the form as D} = , are used.
. n

7 exponential terms as the form of A, (w) = Z‘.l as
s=

e™/“% Eq. (4), the n-th order Volterra kernel,
or the z-th order transfer function of the system
becomes

Hn(a)la ) C!)n)

o o n 5
=%/:w dur"‘[w Attnhin (1, -+, un>DgglAn(Wr>, )

and using the multinomial theorem, the term of
power by the harmonic inputs becomes

rli g(t—ur) =Dj exp _g a/rg<l‘—ur)}
1 rn n
=D} WZ& arg(z‘—ur)}

1 T ) n

i 135 o]

(6)

L[S ]
=Di | 2 gne’ mfA,I(wm)}
n. Lm=1
=Dy, ni=1ny=1 np=1 nllnzl...np!

{fitawe = Anton 1))

where 7, means the mth polynomial of the nth
factorial number. Finally from Egs. (5) and (6),
the general complex form of Volterra series of the
output by the input of pth multiple harmonics is
derived by the following equation

Pi-3(3 22

n1=1ny=1 np=1 N1 ! nzl np!

[T Lgne Vot () | ) 7

»
where gi’h:n, for all 7; n:=0(i=1~p, 7.

integer) and Hy,», (wn) denotes Hy (w1, ***, wm,
-, wp) with the mth harmonic input of the w;
equal to +wx and the remaining wp-» equal
to —wn.

4. Identification of Non-linear
Frequency Responses

For the case of rotor system with orthotropic
bearings by the input of sweeping single-tone
excitation, g () =Ge’®?, the solution form of the
Volterra series in Eq. (7) can be deduced from
Eq. (2) using the concept of a linear solution
associated with the forward (H) and backward
modes (H), which resaits in the form of

p(¢)=p(t) +D(1)
=H1(w) Gejwt+H1<CU> Ge™!
+Hs(0, 0, 0) G +Hs(w, 0, 0) GPe (8)
+H;s (0, 0,0,0,0) G +Hs (0, 0,0, 0,0) GPe**
+ O (H77 H77 H97H97 “‘) )

where in this relation, the property of conjugate
symmetry, i.e., Hh(—w, -, —w) =Ha(w, -, @)
is used and only the principal diagonals of the
three and five dimensions are employed for sim-
plifying the physical interpretation,, i.e., for five
dimensional functions, w;='"*=ws=w®. Substi-
tuting Eq. (8) into Eq.(2) with considering the
terms up to order three only and equating the
coefficients of each exponential order and excita-
tions, the successive formulations for the higher
order (the 2™ and the 3'Y) transfer functions with
the 1% order transfer function can be obtained.
Here for notational conveniences, simplifying the
terms such that H,(w) =ps, where subscript f
and b are forward and backward modes, respec-
tively, Hi(w)=po, Hs(w, 0, ) =ps, Hs(w,
w, ®) =ps3, Hs(w, 0, 0, 0, w) =pss and Hs(w,
®, W, ®, @) =pss, and using the harmonic prob-
ing method (Worden et al., 1997), for the terms
of G@jwt, ée—ja)t Gseijt’ é:ie—jswt, Gsejsa)t and
GBe 7% respectively, the linear equations for the
2" and 3" order transfer functions are then

successively described as

D (w) pr+Dal@) pr1=1,
ﬁa(a)) Df1+ﬁm(w> Do1=0,

Dn (3 CU) ﬁﬁ+DA (30)) Do3
= — (Carj@*+ bony) (P13 051D61)
— (Cnof @*+ kns) (Dor+3D1051)
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DA (3CU> Z7f3+Dni(3a)> Deo3

—(Cnja®+ /fnf) (Do +3paber)

— (Crof @+ kns) (D1 +305De1) (9)
Du(50) p5+Da(50) pos
=33+ kns) (DrDs+ Padsst20n05De1)

—3(3cnj @+ ko) (Drslisn+ Dirbest2DnD51503) .
DA (50)) pfs‘l'Dm( CU) Des
=—3(3Cnj &+ kns) (Drabss+ BsrDss+ 2071001 D53)

—3(3Cuj@*+ k) (Prpat thbsst2babsdu),

where

Dun(@w) =Kn—&®M+jw(Ca—7J»R2).
Da(w) =KA+]a)CA,
Din(®) =Kn— M+ j0(Ca—iJs8),
Da(w) =Ka+jaCh,

From Egs. (9), the 1%, 2™ and 3" order transfer
functions, respectively, are obtained as

p1=D () Dn(w),
171:1:—D< ) Da(w),
02=D(3w) [fs(ps, Do) Du(30)

_fs(f)fb pbl) DA<3(U> ],

P3=D (3w) [f3(pr1, Po1) Dm(3w)
_fs(l)fl, [)bl) I~)A<3(1)) ], (10)
=D (5w) [ f5 (?fl’ Do1, Drs, Des) Dm(50)
—F3(br. Do1. brs. Pos) Da(5w) ],
Des=D (50) [fs(pr, Do, Drs, Ds) Dn(S5w)

—fs(Dr1, Dots s, Bo3) Da(50) ],

where D () = [Du () Dn(®) —Da(®) 17, fs(pp,
D51), f3(Dr1, Bor), fs (D1, Dor, Drs, vs) and fs(ps,
Do1, Dr3, Dw3), are right-hand sides of the 3™ to the
6™ equations in Egs. (9), respectively. For exam-
ple of the linear system, i.e., in case of no medium
bracket term in Eq. (3), the response associated
with the 1°° order transfer function becomes

p(t) =pnGe’® + puiGe™*", (11)

which is consistent with that shown in linear
system (Genta, 1988).

Here as shown in the linear complex modal
analysis for rotor systems, ps1 denotes the linear
complex FRF corresponding to forward mode
and ps1 denotes the complex FRF corresponding

to backward one, whereas, in this non-linear

analysis of the HFRFs, pss and pss (prs and pus)
denote the 3" (5™) order non-linear complex
FRFs corresponding to forward and backward
modes, respectively. From these non-linear com-
plex FRFs, the property of the bearing non-lin-
earity can be identified in practice.

5. Numerical Example

In this simulation, the following numerical
values have been used : m=10 kg, ¢y=20 Ns/m,
cz=15Ns/m, ¢»z=3000 Ns/m, ¢»z=2000 Ns/m,
20 Ns/m, Ay =3X10®N/m, k;=—2X10N/m,
ky=3X10°N/m, k,=2X10°N/m, Fkn=2X10"
N/m, knz=1.5X10""N/m, £2=300rps, J,=0.05
kg/m* With these linear and non-linear para-
meters, Figures 3 show the simulated frequency
response functions for the 1%t (linear), the 3™ and
the 5™ order, respectively. In Eq. (2), due to the
gyroscopic effect, which is caused by the cross-
coupled damping coefficient herein, the FRFs are
not symmetrical to negative frequencies so that
complete FRFs according to the positive and the
negative frequency ranges should be considered
unlike the conventional ones.

From Fig. 3(a), we can see the typical result
of linear FRFs, in rotor system with orthotropic
bearings, associated with one pair of the forward
(F) and backward conjugate (B) in the forward
and backward modes, respectively, whereas in
Fig. 3(b), the 3" order FRFs show two pairs
of the resonant peaks, one at w,s and the other
at wn,s/3, which indicates the existence of cubic
non-linearity. From Fig. 3(c), the 5 order FRFs
show three pairs of the resonant peaks, wxs,
wns/3 and wrs/5, which indicate the existence
of cubic and quintic non-linearties, respectively.
The peculiar feature of the results shown in Figs.
3(b) and (c) is that the (3" and 5*) HFRFs do
not show any distortion in frequency domain so
that they look like the linear FRFs. This is due to
the fact that for simplifying the physical interpre-
tation, only the principal diagonals are employed
so that they represent the exact Volterra kernel
transforms, which is unique and independent of
the excitation level. If the extra terms of HFRFs
associated with additional sweeping multi-tone
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(c) 5% order FRFs
Fig. 3 Non-linear FRFs for rotor system with

orthotropic bearing non-linearity

excitation levels are introduced, these distortion-
al phenomena are explicitly displayed. Another
important feature in HFRF is that they cause
energy transfer whereby an input at one frequency
level influences the other frequency one, further
more, the mode exchanges occur in forward and
backward ones as shown in Figs. 3(b) and (c).
This is also clearly depicted in Egs. (10) in such
a way that though in isotropic bearings the FRFs
corresponding to forward modes are disappeared,
whereas in linear FRFs, the backward ones are
disappeared. We can see from these results that
the HFRFs are fundamentally different from what
one can expect and measure in linear ones in

practice.
6. Conclusions

The analysis of orthotropic bearing non-lin-
earity in rotor system using the complex HFRFs
known to represent the non-linear degree of
bearing orthotropy is newly investigated and
shown to be valid as that of non-rotating struc-
tures or isotropic rotor systems.

The non-linear stiffness and damping forces in
rolling or journal bearings are modeled by cubic
polynomial form, in which HFRF can be de-
duced from Volterra series. Using principal dia-
gonals of the dimensions of HFRFs for simpli-
fying the physical interpretation at one excitation
level, for which the computational efforts are
lessen, the simple forms of dFRFs associated with
the forward and the backward modes can be
derived. The HFRFs show additional sub-har-
monic resonant peaks, which indicate the exist-
ence of higher order non-linearties. Also another
feature of HFRFs is that due to energy transfer
the FRFs for forward and backward modes are
exchanged so that they suggest the fundamental
differences from what one can expect in linear
ones.

We suggest, from this study, the feasibility to
further application to detect non-linear properties
in bearing, effectively.
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